Simulations of spiral galaxies with an active potential: molecular cloud formation and gas dynamics
نویسنده
چکیده
We describe simulations of the response of a gaseous disc to an active spiral potential. The potential is derived from an N-body calculation and leads to a multi-armed timeevolving pattern. The gas forms long spiral arms typical of grand design galaxies, although the spiral pattern is asymmetric. The primary difference from a grand-design spiral galaxy, which has a consistent 2/4-armed pattern, is that instead of passing through the spiral arms, gas generally falls into a developing potential minimum and is released only when the local minimum dissolves. In this case, the densest gas is coincident with the spiral potential, rather than offset as in the grand-design spirals. We would therefore expect no offset between the spiral shock and star formation, and no obvious co-rotation radius. Spurs which occur in grand-design spirals when large clumps are sheared off leaving the spiral arms, are rare in the active, time-evolving spiral reported here. Instead, large branches are formed from spiral arms when the underlying spiral potential is dissolving due to the N-body dynamics. We find that the molecular cloud mass spectrum for the active potential is similar to that for clouds in grand design calculations, depending primarily on the ambient pressure rather than the nature of the potential. The largest molecular clouds occur when spiral arms collide, rather than by agglomeration within a spiral arm.
منابع مشابه
The formation of molecular clouds in spiral galaxies
We present Smoothed Particle Hydrodynamics (SPH) simulations of molecular cloud formation in spiral galaxies. These simulations model the response of a non-selfgravitating gaseous disk to a galactic potential. The spiral shock induces high densities in the gas, and considerable structure in the spiral arms, which we identify as molecular clouds. We regard the formation of these structures as du...
متن کاملMolecular cloud formation and magnetic fields in spiral galaxies
We present ongoing hydrodynamic and MHD simulations of molecular cloud formation in spiral galaxies. The hydrodynamic results show the formation of molecular gas clouds where spiral shocks compress atomic gas to high densities. The spiral shocks also produce structure in the spiral arms, provided the gas is cold (< 1000 K). When both hot and cold components of the ISM are modeled, this structur...
متن کاملMagnetic fields and the dynamics of spiral galaxies
We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D Magnetohydrodynamics (MHD) simulations of galactic discs subject to a spiral potential using cold gas, warm gas and a two phase mixture of both. Recent hydrodynamic simulations have demonstrated the formation of inter-arm spurs as well as spiral arm molecular clouds provided the ISM model includes a cold HI phase...
متن کاملStarbursting Nuclear CO Disks of Early-type Spiral Galaxies
We have initiated the first CO interferometer survey of early-type spiral galaxies (S0-Sab). We observed five earlytype spiral galaxies with HII nuclei (indicating circumnuclear starburst activities). These observations indicate gas masses for the central kiloparsec of ∼ 1 − 5% of the dynamical masses. Such low gas mass fractions suggest that large-scale gravitational instability in the gas is ...
متن کاملStar formation in galaxies: the role of spiral arms
Studying star formation in spiral arms tells us not only about the evolution of star formation, and molecular clouds, but can also tell us about the nature of spiral structure in galaxies. I will address both these topics using the results of recent simulations and observations. Galactic scale simulations are beginning to examine in detail the evolution of Giant Molecular Clouds (GMC) as they f...
متن کامل